The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein.
نویسندگان
چکیده
Chromosomal translocations in acute leukemia that affect the AML-1/CBFbeta transcription factor complex create dominant inhibitory proteins. However, the mechanisms by which these proteins act remain obscure. Here we demonstrate that the multidrug resistance 1 (MDR-1) promoter is a target for AML/ETO transcriptional repression. This repression is of basal, not activated, expression from the MDR-1 promoter and thus represents a new mechanism for AML/ETO function. We have defined two domains in AML/ETO that are required for repression of basal transcription from the MDR-1 promoter: a hydrophobic heptad repeat (HHR) motif and a conserved zinc finger (ZnF) domain termed the MYND domain. The HHR mediates formation of AML/ETO homodimers and AML/ETO-ETO heterodimers. Single serine substitutions at conserved cysteine residues within the predicted ZnFs also abrogate transcriptional repression. Finally, we observe that AML/ETO can also inhibit Ets-1 activation of the MDR-1 promoter, indicating that AML/ETO can disrupt both basal and Ets-1-dependent transcription. The fortuitous inhibition of MDR-1 expression in t(8;21)-containing leukemias may contribute to the favorable response of these patients to chemotherapeutic drugs.
منابع مشابه
Transcriptional repression of the Neurofibromatosis-1 tumor suppressor by the t(8;21) fusion protein.
Von Recklinghausen's disease is a relatively common familial genetic disorder characterized by inactivating mutations of the Neurofibromatosis-1 (NF1) gene that predisposes these patients to malignancies, including an increased risk for juvenile myelomonocytic leukemia. However, NF1 mutations are not common in acute myeloid leukemia (AML). Given that the RUNX1 transcription factor is the most c...
متن کاملSecreted-frizzled related protein 1 is a transcriptional repression target of the t(8;21) fusion protein in acute myeloid leukemia.
Secreted-frizzled related proteins (SFRPs) are modulators of the Wnt signaling pathway that is closely involved in normal and malignant hematopoiesis. Epigenetic deregulation of Wnt modulators leading to aberrant signaling has been reported in adult patients with acute myeloid leukemia (AML), but its occurrence in childhood patients with AML and the role of individual modulators are unclear. In...
متن کاملTranscriptional repression of the RUNX3/AML2 gene by the t(8;21) and inv(16) fusion proteins in acute myeloid leukemia.
RUNX3/AML2 is a Runt domain transcription factor like RUNX1/AML1 and RUNX2/AML3. Regulated by 2 promoters P1 and P2, RUNX3 is frequently inactivated by P2 methylation in solid tumors. Growing evidence has suggested a role of this transcription factor in hematopoiesis. However, genetic alterations have not been reported in blood cancers. In this study on 73 acute myeloid leukemia (AML) patients ...
متن کاملThe t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation.
AML-1B is a hematopoietic transcription factor that is functionally inactivated by multiple chromosomal translocations in human acute myeloblastic and B-cell lymphocytic leukemias. The t(8;21)(q22;q22) translocation replaces the C terminus, including the transactivation domain of AML-1B, with ETO, a nuclear protein of unknown function. We previously showed that AML-1-ETO is a dominant inhibitor...
متن کاملDifferential involvement of E2A-corepressor interactions in distinct leukemogenic pathways
E2A is a member of the E-protein family of transcription factors. Previous studies have reported context-dependent regulation of E2A-dependent transcription. For example, whereas the E2A portion of the E2A-Pbx1 leukemia fusion protein mediates robust transcriptional activation in t(1;19) acute lymphoblastic leukemia, the transcriptional activity of wild-type E2A is silenced by high levels of co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 18 6 شماره
صفحات -
تاریخ انتشار 1998